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Generalized Taylor dispersion theory, incorporating so-called coupling effects, is used 
to calculate the transport properties of a single deformable ‘chain’ composed of 
hydrodynamically interacting rigid Brownian particles bound together by internal 
potentials and moving through an unbounded quiescent viscous fluid. The individual 
rigid particles comprising the flexible chain or cluster may each be of arbitrary shape, 
size and density, and are supposed ‘joined’ together to form the chain by a 
configuration-dependent internal potential V .  Each particle separately undergoes 
translational and rotational Brownian motions ; together, their relative motions give 
rise to a conformational or vibrational Brownian motion of the chain (in addition 
to a translational motion of the chain as a whole). Sufficient time is allowed for all 
accessible chain configurations to be sampled many times in consequence of this 
internal Brownian motion. As a result, an internal equilibrium Boltzmann prob- 
abilistic distribution of conformations derived from V effectively obtains. 

In  contrast with prior analyses of such chain transport phenomena, no ad hoe 
preaveraging hypotheses are invoked to effect the averaging of the input 
conformation-specific hydrodynamic mobility data. Rather, the calculation is effec- 
ted rigorously within the usual (quasi-static) context of configuration-specific 
Stokes-Einstein equations. 

Explicit numerical calculations serving to illustrate the general scheme are 
performed only for the simplest case, namely dumb-bells composed of identically 
sized spheres connected by a slack tether. In  this context it is pointed out that prior 
calculations of flexible-body transport phenomena have failed to explicitly recognize 
the existence of a Taylor dispersion contribution to the long-time diffusivity of 
sedimenting deformable bodies. This fluctuation phenomenon is compounded of 
shape-sedimentation dispersion (arising as a consequence of the intrinsic geometrical 
anisotropy of the object) and size-sedimentation dispersion (arising from fluctuations 
in the instantaneous ‘size’ of the object). Whereas shape dispersion exists even for 
rigid objects, size dispersion is manifested only by flexible bodies. These two Taylor 
dispersion mechanisms are relevant to interpreting the non-equilibrium sedimen- 
tation4iffusion properties of monodisperse polymer molecules in solutions or 
suspensions. 
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1. Introduction 
Transport mechanics (Brenner & Condiff 1972, 1974) in systems composed of 

isolated rigid particles moving through a continuous fluid phase has been the subject 
of extensive theoretical studies for well over a century. Building upon the pioneering 
hydrodynamic investigations of Stokes (1851), who examined the ‘slow ’ viscous 
translational motion of a spherical particle through a quiescent Newtonian fluid, a 
field has emerged which includes a strikingly rich variety of phenomena. Classified 
under the general title of ‘ low-Reynolds-number hydrodynamics ’ (Happel & Brenner 
1983), this field incorporates such diverse areas as suspension rheology , sedimentation 
processes, translational and rotational Brownian motions and colloid science - as well 
as a multitude of other non-equilibrium fluid-particle phenomena. 

In circumstances where the suspended objects are flexible, rather than rigid, 
progress has been limited, owing to the existence of several impediments. Not the 
least of these is the essentially pragmatic problem of dealing rigorously with the large 
number of degrees of freedom required to completely specify the instantaneous 
geometrical configuration of the flexible entity. A second related problem arises from 
the need to incorporate hydrodynamic interactions among the constituent rigid 
bodies making up the flexible body, and moving relative to one another. Usually, the 
first of these is dealt with within the more general framework of statistical mechanics 
(Landau & Lifshitz 1980) and kinetic theory (Bird et al. 1977), while the second is 
circumvented by either the complete neglect of hydrodynamic interactions, or 
by invoking lower-order approximations, such as the Burgers-Oseen interaction 
tensor with preaveraging (Kirkwood & Riseman 1948). This apparent necessity for 
introducing approximate hydrodynamic interaction calculations into the requisite 
analysis has not only hindered quantitative progress in calculations pertaining to 
specific models, but also the actual conceptual development of existing theories. 
Thus, a major aim of the present study is to provide a fresh impetus to the rigorous 
theoretical development of macromolecular (flexible body) transport mechanics by 
utilizing the newly developed framework of generalized Taylor dispersion theory 
(Brenner l980,1982a, b) to complement classical kinetic treatments (Bird et al. 1977) 
of macromolecular hydrodynamics. Our proposed framework allows both of the 
aforementioned difficulties to be surmounted (at least conceptually) ; specifically, all 
translational and orientational degrees of freedom of the individual constituent 
rigid particles comprising the cluster are retained, as too are all the requisite, 
many-body, configuration-specific, hydrodynamic phenomenological coefficients 
(grand resistance and mobility matrices). 

The flexible-body model addressed herein is assumed to consist of a chain or cluster 
of rigid particles, not unlike the classical ‘ bead-spring ’ models of Rouse (1953) and 
Zimm (1956). However, in our treatment the constituent rigid particles are taken to 
be of finite size and to be of arbitrary shape; moreover, the configuration-specific 
internal potential that serves to join them together - thereby permitting collective 
identification of the cluster or chain as a single entity moving through physical space 
- is assumed arbitrary (rather than being limited, for example, by such restrictions 
as pairwise additivity) so long as the potential is sufficiently attractive at large 
particle separations to assure convergence of any subsequent integrals that arise in 
the theory. Other common models, such as the ‘ bead-rod ’ models of Kramers (1946) 
and Hassager ( 1974 a, b)  , or those of ‘ segmentally flexible macromolecules ’ (Wegener 
1982; Harvey, Mellado & Garcia de la Torre 1983; Garcia de la Torre, Mellado & 
Rodes 1985) can presumably be treated with appropriate choices of the potential, 
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although quantum-mechanical effects may unexpectedly arise (Rallison 1979) in 
effecting the transition from flexible to rigid form for the constraining potential. 

In the realm of kinematics, any arbitrary motion of a rigid particle can be 
decomposed into a translation (of a locator point affixed to the particle) and a 
rigid-body rotation (about an axis through that point); however, the same is not true 
of the arbitrary motion of a flexible cluster of rigid bodies. Indeed, it is not a priori 
obvious which, if any, body-fixed geometrical point can best serve as a locator point 
for the chain ‘position’ in physical space. Points such as the centres of mass, volume, 
reaction (Brenner 1967), diffusion (Wegener 1985), or even an arbitrary point affixed 
to any one of the constituent rigid particles all appear to  constitute equally 
reasonable candidates, although the ultimate physical results characterizing the 
long-time transport properties (Brenner & Pagitsas 1989) of the cluster as a whole 
must necessarily show themselves so be independent of the explicit choice made for 
the body-fixed chain locator point. 

Another element of interest, particularly in problems pertaining to the sedimenta- 
tion of flexible chains (Zimm 1982), is that although on average such a chain may 
possess a definite ‘mean configuration’, the chain may instantaneously exist in any 
one of an infinite number of other accessible geometrical configurations (with the 
probability of a specific configuration governed by a Boltzmann distribution, 
entailing the configuration-specific internal potential). For example, although on time 
average the flexible body may possess some definite symmetric shape, it does not 
generally possess this symmetry at all times, or indeed at any single instant of time. 
Since such deviations from the ‘average ’ configuration normally create long-time 
secular or cumulative effects, the long-time physical properties of such a body can 
be expected in general to differ from those of its symmetric, preaveraged, rigid 
counterpart. To rigorously analyse secular effects arising from instantaneous devia- 
tions from the average, generalized Taylor dispersion theory (Brenner 1982a ; 
Brenner & Pagitsas 1989) can be employed. Indeed, this paradigm has already been 
successfully used to investigate comparable sedimentation-dispersion phenomena in 
systems of rigid non-spherical particles (Brenner 1979, 1981). Upon incorporation of 
‘coupling ’ effects (Brenner 1982b), the generalized theory will be shown to be equally 
applicable to the macrotransport analysis of flexible clusters too. 

Prediction of the conventional molecular diffusivity of flexible macromolecules 
(Wegener 1985; Haber & Brenner 1986), free of any sedimentation effects, is itself 
a challenging goal. Recently, Wegener (1985) and Haber & Brenner (1986) have 
independently recognized the important role of coupling between the translational, 
rotational and internal motions of flexible macromolecules. The former has shown 
via a perturbation analysis that the long-time macroscopic translational dispersivity 
of a flexible body is equal to the mean diffusivity of its (unique) centre of diffusion. 
Haber & Brenner (1986) have independently examined the same general problem 
within the Taylor-Aris (Taylor 1953 ; Aris 1956; Horn 1971) dispersion framework, 
performing detailed calculations for the case of a flexible dumb-bell. 

Rheological implications (Bird et al. 1977) of our flexible-chain analysis will not 
be pursued here, but will rather be separately addressed elsewhere. 

The organization of the remainder of this contribution is as follows. In  the next 
section, generalized coupled dispersion theory (Brenner 1982 b) is reviewed, followed 
in $3 by a general formulation of the flexible chain/cluster transport equation 
describing sedimentation within an otherwise quiescent fluid. Transformations 
detailed in $4 permit reduction of this scheme to a format identical with the canonical 
form (Brenner 1980, 1982a, b) of generalized Taylor dispersion theory. Section 5 
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derives explicit generic formulas for the long-time mean sedimentation velocity 
vector u* and dispersivity dyadic D* of the macromolecule through the fluid in terms 
of the prescribed configuration-specific phenomenological data - such data consisting 
of the multiparticle translational and rotational hydrodynamic mobility dyadics of 
the individual rigid bodies together with the internal potential-energy function. 
Sections 6 and 7 provide detailed numerical results for two specific examples, each 
involving so-called tethered dumb-bells. Finally, $8 furnishes a brief discussion of the 
implications of our results. 

2. Generalized Taylor dispersion theory, including coupling 
Generalized Taylor dispersion theory techniques (Brenner 1980,1982 a), incorpor- 

ating coupling effects (Brenner 1982b), are briefly reviewed in this section. The latter 
theory provides a convenient framework for deriving long-time global evolution 
equations (Brenner t Pagitsas 1989) governing transport processes occurring in a 
general multidimensional space spanned by local (fast) and global (slow) variables, 
the former representing ‘ internal ’ degrees of freedom. Flexible-chain transport 
phenomena will subsequently prove to be analysable within this general framework, 
with the fast variables characterizing the instantaneous configuration (conformation) 
of the rigid bodies composing the chain. 

Consider a multidimensional space (Brenner 1982 a) composed of global variables 
Q and local variables q, which are respectively ‘slow ’ and ‘fast ’ in the sense that 
equilibrium is rapidly established within q-space whereas a non-equilibrium state 
permanently persists in Q-space owing to its infinite extent. With 

P = P(Q, q, t I Q’, 4’) (2.1) 

the conditional probability density for finding a Brownian ‘tracer’ at time t in an 
infinitesimal neighbourhood of point (Q, q),  given its initial introduction (at t = 0) 
into the system at (Q’, q’), the canonical transport equation for P adopts the form 
(Brenner 1980, 1982a) 

(2.2) 
ap 
-+VQ*J+V,.j  = s(t)s(Q-Q’) 6(q-q’), 
at 

wherein VQ and V, are the respective global- and local-space gradient operators. In 
the presence of coupling effects (Brenner 1982b), the global and local flux densities 
required above are respectively given by the constitutive relations 

J = UP-DQQ*VQP-e-EDQq*Vq(eEP), (2.3) 

j = UP- DQQ-V, P-ePE D‘JQ*Vq(eEP), (2-4) 

with U and u denoting global and local velocity fields, DQQ and 0 4 4  the global and 
local direct diffusion tensors, DqQ and DQq the coupling or cross-diffusivities, and E 
the dimensionless local-space potential. Each of these phenomenological functions 
are assumed to be known functions of the fast variables q, but independent of Q. 
Furthermore, the symmetry relations (Brenner 1982 b) 

DQQ = DQQt, DOQ = DQQt, DqQ = DQPt, (2.5) 

are assumed to be obeyed by the diffusivity tensors, with t a transposition operator. 
Together, (2.2)-(2.4) are to be solved for P subject to the pre-initial condition 

P = O  ( t < O ) ,  (2.6) 
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a no-flux condition on the local-space boundary, 

n*j= 0 onaqo, (2 .7a)  

and the global attenuation-rate boundary condition 

lQ-Q'lmP+O as lQ-Q1+00 (m = 0 , 1 , 2 ,  ...), (2.7b) 

which assures convergence of all the moments of the distribution function. As such, 
it is readily seen that the required normalization property 

JQ, dQ Jb. dq P = 1 ( t  > 0) (2.8) 

is automatically satisfied by P. Here, qo denotes the (bounded or closed) domain of 
the local space, and Q, the (unbounded) range of the global coordinates (Brenner 
1980). 

Beginning with the above set of well-posed microtransport equations, generalized 
Taylor dispersion theory (Brenner & Pagitsas 1989) aims at deriving corresponding 
long-time macrotransport equations in Q-space, from which all dependence upon the 
local degrees of freedom q has been eliminated. The focus of attention in that 
coarse-scale description is the purely global-space conditional probability density P ,  
defined as (Pagitsas, Nadim & Brenner 1986a, b ;  Nadim, Pagitsas & Brenner 1986) 

- 
p(Q, t I Q', 4') = 1 dq P. (2.9) 

An analysis of the type performed by Brenner (19823) or Nadim et al. (1986) may 
be employed to show that for sufficiently long times, such that equilibrium has 
effectively been established within the local space (which long-time limit is designated 
by the superscript 00),  the latter satisfies the purely global-space transport equation 

40 

i3P 
-+VQ*Jm at = &(t)&(Q-Q'), (2.10) 

with Pm = P ( Q ,  t I Q'), wherein 
- - -  
Jm = U*P"O-D**VQP (2.11) 

is the long-time global flux density. 
The constant convective and dispersive phenomenological coefficients n* and B* 

characterizing (Nadim et al. 1986; Pagitsas et al. 1986a,b) the long-time macro- 
transport process may be found upon quadrature of the integrals 

- 
U* = d q [ T  U-e-EDQ**Vg(eEe)], (2.12) I,. 

B* = Jqo dq{e(DQQ -DQQ*V,B) + [Po"( U-U*) -ee-E DQQ*V,(eE Pr)] B}, 

~ (2.13) 

derived (Brenner 19823; Nadim 1986) from the generalized Taylor (1953FAris (1956) 
moment scheme via their asymptotic, long-time definitions 

valid as t + 00. 
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The respective local-space scalar and vector fields PF(q) and B(q) appearing in the 
latter integrands represent the solutions of the respective sets of equations (Brenner 
1982b; Nadim 1986) 

(2.14~) 

n*[uP,"-e-E DQQ*V,(eEPF)] = 0 on aqo, (2.14b) 

V;[uP: -ee-E DQ'J*V,(eEP,")] = 0, 

governing Po", and 

(2.14~) 

- PFn-(D'Jq.Vq B- DQQ) = 0 on aqo, (2.15 b) 

governing B. The latter vector field is uniquely defined by this system of equations 
only to within a physically irrelevant additive vector constant (Brenner 1980, 
1982 a, b). 

a global- 
space attenuation condition analogous to (2.7b). Equations (2.10)-(2.11), governing 
the macrotransport of POo and involving the mean velocity D* and dispersivity B* 
of the tracer as macroscale phenomenological coefficients, represent a coarse graining 
of their microtransport predecessors (2.2)-(2.4), involving the seven microscale 
phenomenological functions cited following (2.4). Subsequent sections address the 
explicit calculation of U* and II)* for a flexible chain or cluster moving through 
three-dimensional space, (2, y, z )  = Q. 

To complete the system of equations (2.10)-(2.11) we impose upon 

3. General formulation of the flexible-chain transport equation 
Consider a flexible cluster, synthesized by joining together n+ 1 rigid particles of 

arbitrary shapes via interparticle (internal) potentials. These potentials, which can 
be as elementary as simple tethers connecting pairs of particles, or as complex as one 
may wish to imagine, serve to permit collective identification of the n+l rigid 
particles as a single identifiable entity - namely, a 'flexible chain'. I ts  'flexibility' 
arises from the fact that its constituent rigid particles are free to translate and rotate 
relative to one another, subject to any configurational constraints imposed by the 
internal potential E ( q ) ;  as such, the conformation of the chain can (and does) vary 
with time. In order that the identification of the cluster as a single entity remain 
uniformly valid in time, it suffices to require that the diminution of the attractive 
portion of the internal potential with increasing separation between constituent rigid 
particles assure convergence of subsequent integrals that arise in our theory. Without 
further comment the validity of this condition will henceforth be assumed. (Note that 
the non-dimensional internal potential typically enters subsequent integrations in 
the form of a Boltzmann equilibrium factor exp ( - E )  multiplying the integrand.) 

Label the individual rigid particles via the index A ( A  = 0, 1,2, . . . , n, for a total 
of n+ 1 particles), and denote by 0, an arbitrarily positioned particle 'locator point' 
rigidly affixed to particle A.  At any instant the complete configuration (external 
'position ' and internal ' conformation ') of the particle cluster is entirely determined 
by specification of the n+ 1 position vectors R, of the locator points 0, (requiring 
3(n+ 1) scalar coordinates) relative to an arbitrary space-fixed origin, and a com- 
parable set of n+ 1 orientational triplets #, (e.g. three Eulerian angles specifying the 
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orientation of particle A relative to a set of space-fixed rectangular Cartesian axes) 
of each of the constituent particles (requiring another 3(n + 1)  scalar coordinates). 
Note that the symbol #A does not possess operational significance as a vector, whereas 
the infinitesimal rotation pseudovector &bA (to appear later) does. 

Denote by 

P(R, ,..., R n ; # ,  ,..., #,,tlR; ,..., R;;& ,..., 4;) dRo... dRnd4 ,... d4, (3.1) 

the conditional probability for finding the chain configuration within the elementary 
infinitesimal domain 

dR, . . . dR, d#,.. . d#, (3.2) 

centred a t  (R, ,..., R,; 4, ,..., 4,) at time t ,  given that at  time t = 0 the chain 
possessed the configuration (R;,. . . , Rb; &, . . . ,#a) .  The probability density P is 
chosen to satisfy the normalization condition 

JdR,.. . dR, d#,.. . d#, P = 1 (t > 0)) (3.3) 

along with (2.6), in which the limits of integration extend over the entire physical- 
and orientational-space domains available for the external and internal configura- 
tional transport. (Subsequently, we will introduce no-flux boundary conditions that 
assure the conservation of probability density implied by (3.3).) 

The conservation equation governing the detailed configurational transport of the 
flexible cluster through a fluid continuum is of the general form 

in which, more explicitly, 

(3.5a, b)  

where B = 0,1 ,  ..., n and C = O , l ,  ..., A - l , A + l ,  .. .,n. The derivatives defined in 
(3.5) are the respective physical- and orientational-space gradients of particle A. Since 
an infinitesimal rotation is a (pseudo) vector, (3.5b) possesses appropriate operational 
significance as a vector operator (Brenner & Condiff 1972). The Dirac delta function 
source term product appearing on the right-hand side of (3.4) arises from the 
instantaneous introduction of the flexible chain (possessing the indicated primed 
configuration) into the fluid at t = 0, together with the unit normalization (3.3). The 
configuration-specific physical- and orientational-space vector flux densities J[RA] 
andj[4,] of particle A will be assumed to possess the respective convective-diffusive 
constitutive forms 

(3.6b) 

The (non-Brownian) translational and angular velocity vectors of particle A, 
respectively defined as 

(3.7a, b)  



518 H. Brenner, A .  Nadim and S. Haber 

will be assumed given by the low-Reynolds-number constitutive relations (Brenner 
1964; Happel & Brenner 1983) 

R A  = (M[R,  I RB1*FB+MIRA I d B I o T B ) ,  ( 3 . 8 ~ )  
B-0 

(3.8b) 

where FB and TB are the (non-hydrodynamic and non-Brownian) force and torque 
(the latter about point OB) ,  respectively, exerted on particle B .  Typically, these 
contain both interparticle and external contributions. The mobility dyadics M [ A  I B] 
appearing in (3 .8)  are functionally dependent only upon the internal configuration 
(conformation) of the flexible body (i.e. the orientations and relative positions of all 
of the rigid constituent particles of which it is composed). The arguments of each, 
shown in square brackets, concisely serve to distinguish the several physical 
possibilities; for example, those mobilities M[R,  I #B] and M[#, I RBI possessing 
mixed physical- and orientational-space arguments arise from coupling between 
respective rotational and translational motions (not necessarily referring to motions 
of the same particle - i.e. B may or may not be equal to A ) .  The mobilities M [ A  I B]  
are closely related to the comparable Brownian diffusivity dyadics D[A 1 B ]  appearing 
in (3.6) via the multibody configuration-specific Stokes-Einstein relations (Brenner 
1967) 

In principle, the configuration-specific mobilities M [ A  I B ]  may be found by solving 
the (n+ 1)-particle Stokes flow problem (for that specific geometric configuration) for 
which only one of the n + l  particles translates or rotates (but does not do both 
simultaneously) in an otherwise quiescent fluid, while all the other n particles neither 
translate nor rotate.$ Equation (3.9) then provides the requisite molecular 
diffusivities D[A 1 B ] .  

The forces and torques FB and TB appearing in (3.8) are assumed derivable from 
a potential V(Ro, . . . , R ,  ; oo, . . . ,on) : 

D[A I B]  = kTM[A I B ] .  (3.9) 

in which circumstances (3.8) adopts the form 

(3.10a, b) 

(3.1 1 a) 

(3.11b) 

Equation (3.4), supplemented with the constitutive flux expressions (3.6), in 
conjunction with (3.1 l), furnishes the convectivdiffusive equation governing the 
detailed configurational transport of the isolated flexible chain in (Ro, . . . , R,  ; 
do, . . . , #,)-space. All the material, configuration-specific, phenomenological dyadics 
required therein (mobilities and diffusivities) will henceforth be assumed known 

1 More properly, that experiment would furnish the comparable intrinsic hydrodynamic 
resistance dyadics K[A I B] ,  whose elements collectively comprise the so-called grand resistance 
matrix (Happel & Brenner 1983). Inversion of the latter would then yield the required 'grand' 
mobility matrix. 
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functions of the specified configuration, obtainable by solving the appropriate 
low-Reynolds-number hydrodynamic problems (Brenner 1964 ; Happel & Brenner 
1983) cited. These clyadics satisfy the symmetry relationships (Brenner 1964) 

M t [ R A  I RBI = M [ R B  I RAI,  w [ d A  1 #El  = M[dB I d A l ,  

w [ d A  I RBI = M [ R B  I#Al,  (3*12a-c) 

in consequence of ibe Lorentz reciprocal theorem (Happel & Brenner 1983). The 
configuration-specific potential-energy function V required in (3.1 1) will also be 
assumed known. 

The boundary conditions to be imposed upon the probability density P, consistent 
with the necessary conservation statement (3.3), are the usual zero normal-flux 
conditions existing at the physical- and orientational-space ‘boundaries ’ (cf. $2,  as 
well as Haber & Brenner 1986). Subject to the foregoing boundary conditions and 
the pre-initial condition (2.6), the governing equation (3.4) for P may be solved so 
as to obtain an exact description of the configurational transport process ; however, 
such a detailed resolution of the problem is not ordinarily the ultimate objective of 
interest. Indeed, for large n, such a description would be overwhelmingly detailed. 
Rather, if the flexible object is to be viewed as an entity unto itself - modelling, for 
instance a polymer chain, macromolecule, or cluster - a much more physically useful 
and concise description is that of transport through physical space of the flexible body 
as a whole, viewed as the sole object of interest - free from the detailed translational 
and rotational motions of its individual constituent rigid members. 

Attainment of this goal requires that we assign a particular locator point to the 
flexible object as a definable entity, and focus exclusively on the stochastic 
convectivdiffusive trajectory of that point through ordinary three-dimensional 
physical space. Only three scalar coordinates (e.g. the position vector of its locator 
pointj are required to localize the flexible cluster in this space at each instant of time. 
The remaining 6n+3 scalar coordinates then serve to specify the internal 
configuration or conformation of the flexible chain. Specifically, our eventual goal is 
to eliminate from the transport equation the internal degrees of freedom, at least for 
times sufficiently long to assure that equilibrium (or steady state) with respect to 
conformation has been attained (but yet sufficiently short such that no comparable 
terminal state of affairs prevails with respect to position in three-dimensional physical 
space). This task will be accomplished by adopting the formalism of generalized 
Taylor dispersion theory, including coupling effects (Brenner 19824, as reviewed in 
the preceding section. 

Equations (3.4), (3.6) and (3.11), by themselves, effect no definite decomposition 
of the independent variables into respective local (internal) and global (external) 
variables. As this classification is a prerequisite to applying the results of $2,  the next 
section will be devoted to effecting this choice, as well as subsequently casting the 
governing equations of this section into a form directly amenable to generalized 
Taylor dispersion analysis. The latter is accomplished by a concomitant decompo- 
sition of the dependent variables into forms demanded by the local/global classifi- 
cation of the independent variables (i.e. coordinates). That such a transformation is 
possible is an immediate consequence of the ansatz that, for long times, the choice 
of locator point for the flexible body is irrelevant. Specifically, any and all choices 
of chain locator point rigidly affixed to any one of the constituent particles can serve 
equally well for identifying the ‘position’ of the flexible body in physical space; for 
in the long run, each and every constituent particle comprising the flexible body 
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necessarily behaves alike as regards its net translational motion through physical 
space. (Were this not the case, the concept of the cluster as a single identifiable entity 
would be devoid of physical meaning.) While the centres of mass or volume of the 
flexible body are the common choices made for chain locator point in earlier studies 
by others, in fact any point will suffice equally well in the long run. A formal proof 
of such invariance to the choice of chain-fixed locator point is available elsewhere 
(Nadim 1986). 

4. Local/global form of the flexible-chain micro transport equation 

Motivated by the aforementioned ansatz, choose any point 0, rigidly affixed to 
particle A = 0 as the locator point of the flexible cluster. Denote by Q the position 
vector of this point, so that 

This vector thus spans the entire global (physical) space available for transport of 
the flexible object, at  least in the case where no boundaries are present.$ The set of 
coordinates necessary for specifying the internal configuration or conformation of the 
flexible chain consists of 3(n+ 1 )  scalar orientational coordinates arising from the 
n+ 1 orientational triplets #,, #1, . . . , q5n (hereinafter designated collectively as #,+l) 

and the 3n scalar positional coordinates arising from the n relative position vectors 

Q = R,. (4.1) 

def 
ra = Ra- R,  

of the remaining points Oa(a = 1,2, . . . , n) with respect to point 0,. Note that whereas 
the majuscule particle-labelling indices A ,  B ,  . . . previously employed range over the 
integers from 0 to n, minuscule indices a, b,  . . . vary only from 1 to n. The local space 
is thus spanned by the 6n+3 scalar coordinates 

4 (r l ,  r2, . . . , I n ,  #0,#1, . . . # n )  (rn, P+l)- (4.3) 

Define the new gradient operators 

(4.4a) 

(4.4 b ,  c) 

It is readily established that the orientational gradient ( 4 . 4 ~ )  is identical with its 
earlier counterpart (3 .5b) ;  hence, the same symbol is used unambiguously for both. 
On the other hand, (3.5a) is related to (4.4a, b)  via the relations 

(4.5a, b )  

$ We will consistently assume this to be the case in what follows. The case where boundaries 
girdling the physical-space flow are present is easily handled by reassigning one or two of the three 
scalar coordinates comprising R, to the status of local rather than global coordinates. For example, 
in the case where the flexible body moves within a circular cylindrical tube, of the three circular 
cylindrical coordinates ( r ,  4, z )  comprising R,, only the z-coordinate is to be chosen as global. The 
remaining two coordinates (r, #), each of which is respectively bounded, are then to be classified 
as being local in character. 
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(a = 1,2, . . . , n).  The transformation of coordinates from (Rn+l, qW1) to 
(Q,  q )  = (Q ,  rn, #ni . l )  in (3.4), together with the corresponding interpretation of the 
conditional probability (cf. (3.1)) 

P(Q, rn, Qn+l, t I Q', rln, Fn+l) dQ drn d#"+l, (4.6) 

results in the microtransport equation 

n n 

= J ( t ) & ( Q - Q ' )  Il J(ra-&) Il a(+,-+:). (4.7) 

(It can be shown (Nadim 1986) that the volume element appearing in (4.6) is identical 
with that in (3.1), (3.2).) The global flux density vector J appearing above is given 
in symbolic-functional form by the expression 

a-1 A-0 

J = J[R,I, (4.8) 

Aral 4RaI -4RoI (4.9) 

whereas the local translational flux vector densitiesj[r,] are given by [cf. (3.6a)l 

(a = 1,2,  . . . , n) .  On the other hand, the local orientational flux densities j[+A] are 
unchanged from (3.6b). 

The potential function V appearing in (3.10) may be decomposed into the sum 

V = -F.Ro+kTE(rn,#n+l), (4.10) 

(wherein F =  const.), with its global portion - P R O  assumed to arise from the 
action of a uniform external field F(e.g. gravity, causing sedimentation of the flexible 
chain). The constant vector F = - V, V represents the total external force acting on 
the flexible body. The internal contribution to the potential is also assumed to be 
explicitly known, and of the non-dimensional functional form E(rn, dn+l). 

Utilize (4.10) and effect the transformation (4.5) in the constitutive flux equations 
(3.6a, b). In conjunction with (3.9) this yields the following expressions: 

(i) global flux density, 

J =  MIRo~Ro]~FP-DIRo~Ro]*VQP 

(4.11) 

(4.12) 
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(iii) local rotational flux densities, 
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j i # A ]  = M[#A I ROI’FP-D[#A I RO]’VQP 

(4.13) 

Equation (4.7) together with (4.1 1)-(4.13) represents the exact microtransport 
equation governing the detailed stochastic motion of the flexible chain through 
(Q @ q)-space. In  order to apply the results of $2 dealing with generalized Taylor 
dispersion analyses (Brenner 19823) - with the ultimate goal in mind of eliminating 
the local-space dependence - additional notational changes must be effected, namely 
from vector-dyadic to partitioned-matrix folm. 

Towards that end, let the local flux column vector [ j ]  be given in the partitioned 
matrix form 

KjIt = [Ijt[r,l.. . j t[mUt[#,l . .  .jt[#,]4 (1 x (6n+3)1, ( 4 . 1 4 ~ )  

whose individual row-vector elementsj-f[ ] are themselves 1 x 3 matrices whose three 
scalar elements are the three components of the vectorj[ 1 .  Double square brackets 
serve to indicate that the entity they surround is not a simple vector (or later a 
dyadic), but rather a partitioned matrix, whose matrix elements are ‘vectors ’ (1 x 3 
or 3 x 1 matrices) or ‘dyadics’ (3 x 3 matrices). Numbers following a definition denote 
the size of the equivalent matrix representation with scalar entries. Equation ( 4 . 1 4 ~ )  
may be compactly abbreviated as 

(4.14b) 

whose individual column vector elements j [  ] are the 3 x 1 transposed matrices of 
j t [  1 .  This notation readily generalizes to partitioned matrices whose elements are 
‘dyadics’ (i.e. 3 x 3 matrices) rather than ‘vectors’. In  this connection the generic 
identity 

obtains for matrix elements a and /I of any rank. 
Represent the local gradient operator [V,] as the partitioned matrix 

(4.15) 

As such, the microtransport equation (4.7) may be written in the convenient hybrid 
vector/matrix form 

(4.16) 
ap 
at 
-+ vQ*J+ [v,] t’[j] = d(t) d(Q - Q’) d(q - q’) ,  
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in which an obvious definition has been adopted for S(q-q‘). The local flux density 
‘vector’ [ j ]  is found by combining (4.12) and (4.13) to obtain 

[ j ]  = [u] P-[D*Q]*VQ P-e-E[DQQ]*[Vq] (eEP), (4.17) 

whereas the global flux vector (4.1 1) is given in the present notation by the expression 

J =  UP-DQQ*VQ P-e-E[DQ*]*[V,] (eEP). (4.18) 

Appearing in (4.17) and (4.18) are the following phenomenological coefficients : 
(i) Local velocity matrix [u] : 

with$ “a1 = { W R a  I &I- M [ R ,  I Ro11-F 

“A1 = W d A  I R01.F; and 

(ii) Coupling diffusivity matrix [DqQ] : 

with 

and 

(iii) Local diffusivity matrix ED**] : 

DT, I r*l = D[R, I R b l  -D[Ra I R01- D[R, I R*l + D[R, I R01, 

W r a  I d A 1  = m a  I d A 1 -  D[R, I 4 A L  

D**[#A I ral = D[dA I R a I - w 4  I R01 = Dq*+[ra I d A l ,  

D**[dA I dB1 = Q4.I I 4431. 
It is easily established that the square matrix ( 4 . 2 1 ~ )  is symmetric; 
(iv) Global velocity vector U: 

u= M[R,IR0]*F{3x 1); 

DQQ = D[R,IR,] { 3 x 3); 

(v) Global diffusivity dyadic DQQ : 

(vi) Transposed coupling diffusivity matrix [DQQ] : 

[DQQ] = [DqQ]+ (3 x (6n+3)}, 

with the right-hand side explicitly defined in (4.20). 

( 4 . 1 9 ~ )  

(4.19b) 

(4 .19~)  

( 4 . 2 0 ~ )  

(4.20 b)  

(4 .20~)  

(4.21 a) 

(4.21 b)  

(4.21 c) 

(4.21 d )  

(4.21 e) 

(4.22) 

(4.23) 

(4.24) 

Each of the six phenomenological matrices (4.19)-(4.24) are well-defined functions 
of the conformation q, and are all calculable once the n + 1 multibody hydrodynamic 

$ No confusion should result from using identical symbols such a8 u[ 3 in both the matrix-vector 
mode, as in (4.19a), and the literal vector mode, aa in (4.19b) and (4.19~). 
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interaction problem is solved. They further satisfy all the necessary symmetry 
conditions outlined in $2. Despite their complex appearance (and generally large 
numbers of degrees of freedom), they render the forms of the detailed microtransport 
equation (4.16) and constitutive flux expressions (4.17) and (4.18) identical in 
appearance with the corresponding canonical equations of generalized coupled Taylor 
dispersion theory outlined in $2. 

5. Macrotransport coefficients 
Having transformed the detailed equations governing the configurational transport 

process into the canonical forms of coupled generalized Taylor dispersion theory, the 
formal results for the long-time mean velocity vector and dispersivity dyadic of the 
flexible chain may now be given explicitly. 

5.1. Mean velocity vector n* 
Following (2.12), t h e  expression for the mean velocity vector of the flexible body, 
sedimenting through the viscous fluid under the action of the external force F (cf. 
(4.10)), adopts the hybrid vector/matrix form 

- 
U* = jq0dq{P," V-e-E[DQQ]*[V,] (eEP,")}, (5.1) 

in which the volume element dq represents drnd#n+l. The quantities V ,  [DQ*], E 
and [V,] appearing in the integrand are respectively given by (4.22), (4.24), (4.10) 
and (4.15). The local equilibrium density e(q) = e(F, #n+l) ,  required above, 
represents the solution of the pair of equations (cf. (2.14)) 

[v,]+*{[u] P~-e-~[Dq*].[v,] ( e E e ) }  = 0, (5.2a) 

Jq0dq Pi? = 1, (5.2 b) 

wherein, rather than specifying explicitly posed boundary conditions, any such 
required conditions are incorporated into the potential E (in a manner similar to 
so-called ' hard-sphere ' potential interactions) and/or the phenomenological coeffic- 
ients. Coefficients [u] and [DQQ], required above, are given explicitly by (4.19) and 
(4.21). 

5.2. Dispersivity dyadic 6* 
Corresponding to (2.13), the flexible-body long-time dispersivity dyadic is 

B* = J dq{P,"(DQQ - [DQQ]* [v,] B) + [P,"( U-U*) -e-E[DQQ]* [v,] ( e E e ) ]  B}, 
40 

(5.3) 

with DQQ given by (4.23). The global-space vector field B(q),  defined over the local 
space qo, may be obtained (cf. (2.15)) upon solving the equation 

[v,]+-{[u] P," B-e-E[D**].[v,] (e"PF B) +P,"pQ]} 

= P,"( U-U*)-e-E[DQ,].Dv,](eEP,"), (5.4) 

subject to appropriate ' boundary ' behaviour built into the phenomenological 
coefficients and/or potential. The B-field is uniquely determined only to within an 
arbitrary additive constant vector. 
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For completeness we also provide explicit forms for boundary conditions (2.14b) 
and (2.15b) in a formulation that includes a conventional treatment of boundaries. 
If the scalar equation 

represents an explicit parameterization of the local-space boundary aqo (with s < 0 
within, and s > 0 outside of aqo), the unit outward-drawn normal 'vector' [n] will 
be given by 

(5.6) 

In this formulation, (5.2a,b) are to be supplemented by the zero-normal-flux 
condition (cf. (2.14b)) 

s ( P ,  p + l )  = 0 (5.5) 

[ni = (p,]tsqv,i  s)-i[v,i s. 

whereas (5.4) is to be solved subject to (cf. (2.15b)) 

-P,"[n]t*([D*q].[v,] B-[DqQI]) = 0 on aqo. (5.8) 

5.3. 'Molecular dispersion ' bM in the absence of sedimentation 
This subsection provides solutions of the above sets of equations for circumstances 
in which the global external force Fgiving rise to sedimentation of the flexible chain 
is absent. Thus, chain transport occurs solely as a result of the coupled translational 
and rotational Brownian motions of its constituent rigid particles. With F = 0 it may 
be anticipated that u* = 0, a fact which will be proved shortly. As such, the long-time 
transport is characterized solely by D*, whose explicit form will now be calculated. 

Upon setting F = 0, the phenomenological coefficients [u] and U are found to 
vanish identically (cf. (4.19) and (4.22)). Equations (5.2a, b) therefore possess the 
unique (Brenner 1982 b) solution 

= W-le-E, W = Jqodq e-E, (5.9a, b) 

(which also satisfies (5.7)). Substitution of (5.9) into (5.1), in conjunction with the 
vanishing of U, thereby demonstrates that 

- u* = 0, 
as expected. 

Under these conditions (5.4) adopts the simple form 

(5.10) 

thereby requiring that 
[V,] B = [Dqq]-l*[DqQIJ (5.12) 

(which also satisfies (5.8)), with [DP*]-' the matrix inverse of [ D p * ]  (itself a 
(6n+3)  x (6n+3)  matrix). Examination of (5.3) suggests that since the terms 
multiplying B in the integrand vanish, no need exists to solve (5.12) explicitly for 
Bin the present case. Substitution of (5.12) into (5.3) immediately yields the long-time 
' molecular dispersivity ' dyadic (in hybrid dyadic/matrix form) 

P = d q ~ ( ~ Q Q - [ D Q g ~ . [ D q q ~ - - 1 ~ ~ ~ ~ Q ~ )  (5.13) 

of the flexible chain. Note that this expression differs from an averaged molecular 
diffusivity for the body. In particular, although no net external force was assumed 

I 
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Tether of 
ultimate 
length L 

FIGURE 1. Tethered dumb-bell. 

to exist, no such assumption was made regarding external ‘couples’ tending to confer 
upon the flexible body a particular orientation. The resulting ‘molecular dispersivity ’ 
(5.13) may indeed be anisotropic, as will prove to be the case for the non-sedimenting, 
but ‘loaded’, flexible dumb-bell described in $7. 

6. Sedimentation of a flexible dumb-bell 
The general multiparticle analysis developed in preceding sections will be applied 

in this section to the two-body problem arising from the sedimentation and diffusion 
of a flexible Brownian dumb-bell in an otherwise quiescent viscous fluid. 

As in figure 1, consider a dumb-bell composed of two identical rigid spherical 
particles, numbered 0 and 1 ,  of radii a, whose geometric centres - possessing 
respective position vectors R,, R, -are chosen as their respective locator points. Each 
of the constituent spheres is assumed to be homogeneous, possessing a density higher 
than that of the surrounding fluid. Denote by IAml the difference between its en vacuo 
mass and that of the displaced fluid. In  a gravity field of vector strength g, the 
combined gravitational-buoyancy portion of the dumb-bell potential is thus found 
to be 

(6.1) - IAml g* R, - 1 Am1 g* R, = - 2)AmJ g*R,  - (Am1 g* r,, 

where, in accordance with (4.2), 
rl = Rl-Ro.  

The total potential of the flexible dumb-bell is obtained by adding to (6.1) the 
additional (internal) conformational potential kZ’#(r1), which we assume to depend 
only upon the internal vector rl, but not upon the orientations of either of the 
individual spheres. This yields (cf. (4.10)) 

V = -PR,+kZ’E(r,), (6.3a) 
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in which we identify the total external force, 

F = 21Aml g ,  
and total internal potential, 

(6.3b) 

kTE(rl) = kTI?(rl) - lAml g* rl. ( 6 . 3 ~ )  

The latter contains contributions from the purely conformational potential as well 
as from the ‘internal ’ portion of the gravitational-buoyancy potential. 

As a joint consequence of the choices of the sphere centres as individual sphere 
locator points, the assumed homogeneity of each of the spheres (resulting in the 
absence of external torques about their centres), and the assumed independence of 
the conformational potential upon the orientations (k, #1) of the constituent spheres, 
it may be shown that the latter orientations play a superfluous role in the analysis 
(since all the phenomenological microtransport coefficients appearing in the theory 
are necessarily independent of (#o,#l)). As such, it is convenient to eliminate these 
internal variables at the outset by simply integrating the fundamental conservation 
equation (4.16) over the orientational degrees of freedom.$ This yields a greatly 
simplified set of microtransport equations governing the probability density 
P(Ro, rl, t I R;, ri) ,  with R, spanning the global space (of. (4.1)),  i.e. 

and with the vector rl serving as the sole local coordinate (cf. (4.3))’ i.e. 

q = rl. (6.5) 

This simplification e l imktes  the prior necessity for a hybrid matrix/dyadic form 
of the basic microtransport equations ; in fact, the following ‘equivalence ’ relations 
obtain (cf. (4.15), (4.19)-(4.24)): 

w,n = vrl, Bun = ( M ~ ~ - ~ ~ ~ ) ~ ~ ,  wn = D ~ ~ - D ~ ~ ,  (6.6a-c) 

IPQQI = Dll-Dlo-Dol+Doo = 2(D00-D10), (6.6d) 

U =  Moo*F, DQQ = Doo, [[DQ*J = Dol-Doo = Dlo-Do0, (6.6e-g) 

wherein the right-hand sides of each of the above expressions are either vectors or 
dyadics. In  writing these relations we have introduced the simplified notation 

M[R, I RBI  = M A B ,  D[R, 1431 = 4,’ (6.7) 

since, in the absence of orientational variables, no confusion can result in the course 
of interpreting the right-hand sides of these expressions. Furthermore, in (6.6d, g) use 
was made of the identities 

(6.8a, b )  

These low-Reynolds-number identities obtain when the two spheres composing the 
dumb-bell are identical (Brenner 1964; Brenner & O’Neill 1972; Jeffrey & Onishi 
1984). 

The equivalence relations (6.6) will now be employed to specialize the general 

Do1 = DlO(~01 = MlO), Dl1 = DOO(M11 = M o o ) .  

results of $5 to the present sedimenting flexible-dumb-bell problem. 

2 This is possible since the phenomenological ooefficients appearing in e.ach of the constitutive 
flux expressions are presently independent of *A.  
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6.1. Mean settling velocity vector V* 
Equations (5.2) for e ( r , )  here adopt the respective forms 

Vrl * [(Mlo - Moo)*FPr - 2e-E(D,0 -D, , ) .v ,~(~~PF)]  = 0, ( 6 . 9 ~ )  

(6.9b) 

in which Fand E are given by (6.3b, c), and the symbol T , ~  denotes the entire domain 
accessible to r,. Their solution is the Boltzmann distribution 

pi? = ~-1exp[-B(r,)l ,  (6 .10~)  

with the conformational potential and W the normalization constant 

(6.106) W = 6, dr, exp ( - 8). 

8 is assumed to contain, inter alia, the so-called hard-sphere repulsive potential 
contribution, preventing interpenetration of the spheres. For the tethered dumb-bell 
depicted in figure 1, 8 thus adopts the form 

(6.1 1) 

with L the tether length. To verify that (6.10) is indeed the solution of (6.9), note 
that with given by (6.10) the following identity prevails: 

Pr F 
e-EVrl(eEe)  = --. 

2kT (6.12) 

Substitution of the latter into ( 6 . 9 ~ )  followed by use of the Stokes-Einstein 
relation (3.9) shows that the term within square brackets in ( 6 . 9 ~ )  vanishes 
identically, thereby confirming the solution (6.10). 

Equation (5.1) here adopts the form (cf. (6.6a, e, 9 ) )  

(6.13) 
- 
U* = JTrl dr,[Pr Moo*F-e-E(D,o-Doo)*V,l(eEP~)]. 

With use of (6.10) and (6.12) this becomes 

- 
U* = [ W-' 6, dr, exp ( - 8) M] F, (6.14) 

def 
in which M = f( Moo + Ml0). (6.15) 

The mobility dyadics'appearing in the latter are known functions of the centre- 
to-centre displacement vector r,  (Batchelor 1976; Jeffrey & Onishi 1984; Kim & 
Miillin 1985). As a result of the inherent symmetry of the dumb-bell geometry, all 
of the phenomenological transport dyadics and, hence, M may be written in the 
body-fixed, transversely isotropic form (Brenner 1964) 

M = M,,ee+M,(/-ee),  (6.16) 
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with e a unit vector in the direction of r,, and with the scalar functions MI, and M ,  
dependent only upon the scalar magnitude r of rl : 

Ir,l = r ,  r, = re. (6.17) 

Explicitly, these are given in the notation of Jeffrey & Onishi (1984) as 

M,,  = (12va)- ' (~&+x&),  ML = (12q .4- l (y : ,+y&) ,  (6.18a, b)  

with the dimensionless functions xf,, x&, yf ,  and y& furnished by these authors in 
their $58 and 9. (Note that whereas we have numbered our spheres 0 and 1, theirs 
are labelled 1 and 2 ;  moreover, their sphere radius-ratio parameter h = a2/al is here 
equal to unity, while their non-dimensional sphere centre-separation parameter s here 
becomes s = r/a.) Numerical evaluation of (6.14) will subsequently be carried out for 
the tethered dumb-bell case (6.11). However, no conceptual difficulties exist in 
contemplating comparable calculations for other, more complex, conformational 
potentials - for example a Hookean spring connecting the sphere centres. 

6.2. Pure molecular diffusivity DM 
Although this section is focused on dispersive effects accompanying sedimentation, 
it is instructive to consider first the simpler circumstance where sedimentation is 
absent (F = 0), so that the only transport mechanism is molecular diffusion of the 
flexible dumb-bell. The internal Boltzmann equilibrium probability density (6.10) 
obviously remains unchanged as F+O, establishing the validity of (6.10) even in the 
absence of sedimentation. In  this limit, the sedimentation velocity (6.14) vanishes, 
whence the purely molecular contribution to the dumb-bell dispersivity adopts the 
form (cf. (5.13)) 

with 
rl Af --- 

D = ~(Doo+Dl0) = kTM. 

(6.19) 

(6.20) 

These results point to the interesting conclusion that if the quantity within square 
brackets in (6.14) is interpreted as a 'mean' dumb-bell mobility dyadic (and denoted 
by M, as in (6.22)), then the Stokes-Einstein-type relationship FM = kTM obtains 
between the mean molecular dispersivity (6.19) and the mean mobility. 

6.3. Sedimentation dispersivity b;* 
We here resume calculation of the dumb-bell dispersivity dyadic 6* for the case 
F += 0, incorporating coupling effects arising from interactions between the 
translational-rotational-vibrational Brownian motions of the dumb-bell and its 
instantaneous configuration-dependent sedimentation velocity U. 

Using the equivalence relations (6.6) together with the identity (6:12), the required 
B(r,)-field is found to satisfy (cf. (5.4)) 

Vrl [ - 2P:(DoO - Dlo) Vrl B+ PF(Dlo - DO0)] = P,"(M-M) OF, (6.21) 

with M given by (6.15) and 
namely 

defined as the term within square brackets in (6.14), 

(6.22) IW = W-' Jrr1 dr, exp ( - 8) M. 
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The decomposition 

together with the definition - 
def 

d 2(0,,-D1,) 

furnishes the following equation governing B' : 

- V r l . ( P r d * V r l B ' )  = P,"(M-;ICil).F. 

(6.23) 

(6.24) 

(6.25) 

Were explicit recognition to be given to the boundary condition (5.8) imposed on B, 
(6.25) would be supplemented by the boundary condition 

- Pr n*d*Vrl  B' = 0 on ar,,, (6.26) 

of rl space, with n the outwardly directed unit normal vector on the boundary 
were the latter space indeed bounded. 

The dyadic d possesses the transversely isotropic decomposition 

d = dll ee+d,(/-ee), (6.27) 

with the r-dependent scalar coefficients dll and d, related to the dimensionless 
functions of Jeffrey & Onishi (1984) via the relations 

(6.28a, b )  

Equation (6.25) is most conveniently solved (Brenner 1979, 1981) by introducing 

B'(r,) = b(r , ) .F  (6.29) 

(to which definition of b may be added a physically irrelevant, arbitrary, additive 
constant vector, which we shall here take to be zero without loss of generality). 
Substitution into (6.25), followed by mutual cancellation of the 'arbitrary' space- 
fixed vector F from both sides of the resulting equation, yields 

V r l . ( e  d . V r l b )  = P,"(;ICil-M). (6.30) 

This exclusively body-fixed inhomogeneous equation governs the dyadic field b. 
Further simplifications result from confining subsequent attention in this section 

to circumstances where the conformational potential &,) depends only upon the 
scalar magnitude r (cf. (6.17)) of r,, but not upon the direction e of the latter vector. 
(An example where this is not the case will be considered in the next section.) 
Consequently, since the volume element dr, may be represented as 

dr, = r2 dr d2e, (6.31 a)  

with d2e ( = sin t9 dt9 dq5) an element of solid angle on the surface of a unit sphere S, 
(Brenner 1979), several of the required multidimensional integrations (e.g. (6.10 b ) ,  
(6.14), (6.19)) may be partially performed. In particular, it is found that 

a body-fixed dyadic field b(r l ) ,  defined by the relation 

since 

m 

W = 4x0, w = drr2 exp[-#(r)], 
Jr -0 

fsl d2e = 4x. 

(6.31 b,  c) 

(6.32) 
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Furthermore, upon substitution of (6.31b) and (6.16) into (6.22), we find after 
performing the resulting S,  integration that the dyadic M adopts the isotropic form 

In obtaining (6.33a), use was made of the dyadic identity (Brenner 1979) 

(4x)-' 5, d2e ee = $/. (6.34) 

Equations (6.33a) and (6.16) combine to yield 
7W-M = [ M - ~ ( M I I + 2 ~ ~ 1 / - % ( ~ I I  -M,)P2(e), (6.35) 

with the dyadic 
P2(e) = a(3ee-/) (6.36a) 

the polyadic surface spherical harmonic of degree 2 (Brenner 1964,1979, 1981). This 
possesses the useful property that, with V: = V;V,, 

V: P2(e) = - 6P2(e), (6.36 b) 

in which V, is the gradient operator on S, (Brenner & Condiff 1972; Brenner 1979), 
being related to V,, via the expression 

1 a 
V,, = -V,+e-. 

r ar 
(6.37) 

Introduction of (6.35) into (6.30) yields 

V,,* (e-Bd*V,lb) = e-A[x-$(Mll +2M1)]/-9-k(M,, -Ml) P2(e). (6.38) 

The form of the forcing term on the right-hand side of the preceding equation 

W,) = f(r) / + g o 9  Pz(e). (6.39) 

Substitute (6.39) into the governing equation (6.38) and employ the identities 
(Brenner & Condiff 1972) 

e*V, = 0, V,e = t-ee: Ve*e = 2, (6.40 a-c) 

together with (6.36b), to obtain the resulting pair of ordinary differential equations 

suggests a trial solution of the form 

(6.41 a) 

(6.42 a) 

respectively governing the unknown scalar fields f ( r )  and g( r ) .  For these specific 
circumstances in which the tethered potential (6.11) is adopted it proves more 
convenient to restrict attention to the domain 2a < r < L (outside of which 
vanishes) in the course of solving these equations. Boundary condition (6.26) can then 

df (6.41 b) 
be shown to require that 

d - = 0  atr=2a ,L ,  

d - d9 = 0 at r = 2a, L. (6.42 b)  

II dr 

dr 
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Equations (6.41) and (6.42) are simple ordinary differential equations, whose 
solutions can readily be obtained via standard numerical analyses. (Note that the 
phenomenological coefficients appearing therein are not themselves known in 
analytical form (Batchelor 1976; Jeffrey & Onishi 1984; Kim & Mifflin 1985), thereby 
precluding analytical solutions of these equations.) Upon their solution the B-field 
will be fully known, adopting the form (cf. (6.23), (6.29), (6.39)) 

BP,) = -fr, + [f(r) l + g ( r )  RMl’F. (6.43) 

Upon use of (6.6) and (6.12) the dispersivity dyadic (5.3) becomes 

dr, e -4  [Do, - (D,, - Doo) * Vrl 4 + (M - M) FB}. (6.44) 

The contribution of the -fr, term appearing in (6.43) to the value of (6.44) arises 
solely from the square-bracketed term in the integrand of the latter, this contribution 
being identical with the so-called molecular portion (6.19) of the dispersivity. The 
contribution from the remaining part of the integrand in (6.44) vanishes in conse- 
quence of the polyadic integral identities 

i, B*= w-1 

1 4x fsl d2e ee . . . ee = 0, (6.45) 

valid for any odd number of multiples of e occurring in the integrand. 
On the other hand, the remaining term of (6.43) contributes to the dispersivity only 

as a consequence of the last term within the curly brackets in (6.44), this being the 
so-called ‘ convective ’ contributionZ)C to the dispersivity. Thus, the total dispersivity 
of the sedimenting dumb-bell becomes 

LT* = BM+iF, (6.46) 

with the molecular contribution given by (6.19) - here taking the isotropic form (cf. 
(6.20), (6.22), (6.33)) 

DM = /DM = /kTB,  (6.47) 
- 

and the ‘convective ’ contribution given by 

bc = F[ W-’ IT., dr, e-$(M-M) (f/+BP,)]*F. (6.48) 

Substitute (6.35) into (6.48) and use the dyadic surface spherical harmonic ortho- 
gonality condition 

-& fsl d2eP,(e) = 0 

D C = a F F + B F T . F  

(since P,(e) = l ) ,  to obtain 
- 

Here, the tetradic T is defined as 

(6.49) 

(6.50) 

(6.51) 
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whereas the dimensional scalar constants a and B are given by 

drr2e-i[B-?(MII +2M,)] f ( r ) ,  (6.52) 

2 *  
/3 = 30 J', dr r2e-%(Ms - M,) g(r). (6.53) 

Expression (6.52) for a may be written in a more convenient form upon multiplying 
both sides of (6.41 a) by r2f and integrating by parts ; this eventually yields 

(6.54) 

The tetradic T integral (6.51) can be evaluated explicitly (Brenner 1979; Haber & 
Brenner 1984)' yielding the explicit Cartesian tensor form 

%kl = &[3(4k a,, + 4ZW -2% M. (6.55) 

Consequently, F. T*F = &P[4FF+ 3(1-F.)], (6.56) 

in which F = IF1 and 
- F  F = -  

F 
(6.57) 

is a unit vector in the direction of F. Finally, substitute (6.56) into (6.50) and add 
the resulting expression to (6.47) to obtain the transversely isotropic dispersivity 
dyadic 

D* = qFF+q(/-FF),  (6.58 a) 

wherein D B = W + ( a + $ ) P ,  D?=D"+$?P. (6.58b, c )  
- 

6.4. Tethered, hard-sphere dumb-bell calculations 
In  this subsection the requisite integrals appearing above will be explicitly evaluated 
for circumstances in which the conformational dumb-bell potential is given by (6.11). 
The tether itself is assumed to be massless and of ultimate (i.e. inextensible) length 

The requisite calculations involve evaluation of the mobility constant 2, which 
furnishes the sedimentation velocity through (6.14), (6.22) and (6.33)' and the mean 
molecular dispersivity through (6.47). Also required are the constants a and B, which 
provide the convective contributions to the dispersivity through (6.50) or (6.58). The 
latter convective calculations necessitate solving (6.41) and (6.42) for the respective 
scalar functions f ( r )  and g(r ) .  

L (figure 1). 

Denote by 
M ,  = (127cpa)-', D ,  = (127cpa)-' kT ( 6 . 5 9 ~ '  b )  

the respective 'non-hydrodynamically interacting ' dumb-bell mobility and diffu- 
sivity coefficients. These admit of the pair of non-dimensionalizations 

(6.60) 
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RGURE 2. (a) Mean non-dimensional mobility us. non-dimensional tether length x; 
( b )  enlargement of the near-touching range 2 Q x Q 3. 

involving the dimensionless normalized mobility coefficient (cf. (6.33 b ) ,  (6.18), 
(6 .31~))  

k(x) = (3Ui)-1j2xdssz(@ll +2&,), (6.61 a)  
- 

wherein 

and 

In the above 

(6.62) 

(6.63) 

(6.64) 
r 
a 

s = -  ( 2 G s G x ) .  

Define the additional non-dimensional functions 

Then, with the dimensionless counterparts off and g defined as 

(6.41 a )  and ( 6 . 4 2 ~ )  respectively become 

(6.66 a ,  b )  

( 6 . 6 7 ~ )  

(6.68 a )  
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FIGURE 3. Taylor dispersivity coefficient Oi vs. non-dimensional tether length x. 

These are to be solved in the region 2 < s < x subject to the no-flux conditions 
(cf. (6.41b), (6.42b)) 

(6.67b) 
A d j  
d - = 0  a t s =  2,x,  

11 ds 

A - = O  do a t s =  2,x.  
’11 ds 

Equations (6.67a, b) possess the first integral 

Define the non-dimensional Langevin parameter 

Fa 
Y = E ’  

(6.68b) 

(6.69) 

(6.70) 

embodying the ratio of gravitational to thermal energies of the dumbbell, to obtain 

wherein 

and 

(6.71) 

(6.72) 

( 6 . 7 3 ~ )  

(6.73b) 
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FIGURE 4. (a) Taylor dispersivity coefficient us. non-dimensional tether length x ;  
( b )  enlargement of the near-touching range 2 Q x Q 4. 

Thus, the dimensionless total dumb-bell dispersivity dyadic is given by (cf. (6.58a-c)) 

in which 

Moreover, the dimensionless mean dumb-bell velocity vector is 

( 6 . 7 4 ~ )  

(6.743, c) 

(6.75) 

The three scalar constants 2, di and /?, required above, are functions only of the 
dimensionless tether-length parameter x. We have evaluated them numerically, our 
results being summarized in figures 2-4. The requisite input mobility data for the 
calculations were principally those of Jeffrey & Onishi (1984). For s < 2.015 and 
s 2 4.0, their respective 'nearly-touching ' and ' widely-separated ' asymptotic ana- 
lytical formulas were employed to calculate the required transport coefficients ; for 
intermediate values of s, their numerically tabulated data, as well as that of Batchelor 
(1976), were used in conjunction with a second-order interpolation scheme (Abrama- 
witz & Stegun 1972). The ordinary differential equation (6.68) was solved via a 
finite-difference scheme (HoLnbeck 1975). m 

Figure 2(a, b) furnishes M us. x. For touching spheres (x = 2), attains the 
limiting value 1.437, decreasing monotonically (after a slight initial increase) to an 
asymptotic value of 1.0 as x+ 00. Figure 3 summarizes the variation of di with x. 
The latter is zero for the touching-spheres case x = 2, undergoes a rapid initial 
increase for increasing values of x, and finally attains an asymptotic value of &,. 
Figure 4(a,b) shows the dependence of /!? upon x. For touching spheres, 
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B = 5.33 x decreasing rapidly to a minimum a t  x x 2.09, generally increasing 
thereafter to an eventual asymptotic limit of &. (The pair of limiting x = 2,m results 
cited above were not part of the numerical calculations; rather, they were analytically 
calzlated by appropriate asymptotic schemes.) The extreme X-dependent behaviour 
of M and B near x = 2 is a manifestation of the singular behaviour of the mobility 
functions (Jeffrey & Onishi 1984) for touching spheres. That & and B attain constant 
non-zero limiting values as x+ co indicates that, even with no potential interactions 
other than hard-sphere repulsion (e.g. no tether or spring), the effect of the second 
sphere upon the dispersivity of a sedimenting dumb-bell is always manifested - at 
least for times sufficiently long for the two spheres to have sampled all accessible 
relative configurations. Of course, this characteristic time also increases with x. 

7. Diffusion of an inhomogeneously weighted, neutrally buoyant 
dumb-bell in a gravity field 

As a second application we consider the tethered dumb-bell discussed in the 
previous section for circumstances wherein the dumb-bell is neutrally buoyant as a 
whole, while - of the two individually homogeneous spheres comprising the dumb-bell 
- one is denser than the fluid by an amount corresponding to a particle/displaced 
fluid mass difference IAml, the other being less dense by precisely this same amount. 
Since F =  0, the dumb-bell does not suffer net sedimentation as a whole. Con- 
sequently, its mean motion may still be described as pure Brownian diffusion, albeit 
with an anisotropic diffusivity. For definiteness, choose sphere 0 to be the lighter 
one; hence, on average, the centre of sphere 1 will be found to lie vertically below 
that of sphere 0. (On average, it is physically evident that the tether will generally 
be stretched to its limit, and hence will be maintained in a state of tension.) Such 
a flexible body will be termed a ‘loaded’ dumb-bell. 

The gravitational-buoyancy portion of the potential for such a body is 

lAml g * R ,  - IAmJ g*Rl = - IAml g*r, ,  

V = kTE(r,) = kT#(r,)-IAmlg*r,, 

(7.1) 

whence the total dumb-bell potential here takes the form 

(7.2) 

with @r,) the internal conformational potential, given by (6.11) for the present 
tethered case. Since no net external force is now exerted on the dumb-bell (i.e. F = 0), 
the results presented at the end of 55 remain applicable, whence it may be 
immediately concluded that (cf. (5.10)) 

(7.3) u* = 0, 

The equilibrium density e ( r , )  is given by (5.9), here taking the explicit form 

- 

confirming the absence of sedimentation of the dumb-bell as a whole. 

e ( r , )  = W-’ exp [ - E ( r J ] ,  W = dr, exp [ -E(r l ) ] ,  (7.4a, b) 

with E(r,) defined in (7.2). Substitution of (7.4) into (5.13), in conjunction with use 
of the equivalence relations (6.6c, d ,  f, g ) ,  yields the mean ‘molecular’ dispersivity 

Tri 

DM = W-’ J,,, dr, exp ( -E) D (7.5) 
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of the loaded dumb-bell, in which the configuration-specific molecular diffusivity D 
is identical with that defined in (6.20). Explicit evaluation of (7.5) requires use of the 
identities 

(4n)-l I, d2e exp (u-e) = w-l  sinh w, ( 7 . 6 ~ )  

(47c)-lfs d2eee exp (u-e) = 66[(~-'+3v-~) s i n h v - 3 ~ - ~  coshw] 
I 

+ / ( v - ~  co~hw-v-~ sinhw), (7.6b) 
wherein u = 6w is any constant vector of magnitude v = )uI in the direction of the unit 
vector 6. 

Upon noting that (cf. (6.16), (6.18), (6.20), (6.61 b, c)) 

D - = ee&,, + (I- eel BL, 
D m  

(7.7) 

and upon defining the Langevin parameter A for the present case to be 

(7.8) 
lAml ga A=- 
kT ' 

the identities (7.6a, b)  may be used to obtain the dimensionless form of (7.5) (with 
Dm given by (6.59b)) as 

with components A and B respectively given by 

wherein @ = A - 3 ( ~ h  cosh~A-sinh~A-22/! cosh2A+sinh 2A). ( 7 . 1 0 ~ )  

Dimensionless scalars A and B depend functionally only upon the non-dimensional 
parameters x and A, the latter being the Langevin parameter (7.8) measuring the ratio 
of the orienting gravitational potential energy IAm( ga to the disorienting thermal 
energy kT, while the former is defined in (6.63). Analogously to the calculations of 
the preceding section, the evaluation of (7.10a-c) must be performed numerically, 
although such calculations now require only straightforward quadrature. Moreover, 
for large values of h (i.e. large mass inhomogeneities, leading to perfect alignment 
of the dumb-bell dipole parallel to the gravitational field) the quadrature8 can be 
performed analytically, leading to the following asymptotic limiting values : 

A - a~(X)+o(xA)-~, B - [~I,(x)-~,(x)][~-~(xA)-'+O(X~)-~], (7 .11a ,b)  

valid when X A  
(7.10) are found by a straightforward application of L'Hospital's rule to be 

1. Moreover, for touching spheres (x = 2), the limiting forms of 

B( 2,  A )  = [A?,, (2) - A?,(2)] { 1 - 3 [ 2A c$t: - 'I}. 
(7.12 a)  

(7.12 b )  
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X 
FIQURE 5. Isotropic Taylor dispersion coefficient A us. non-dimensional tether length x 

at various Langevin parameters A for the loaded dumb-bell. 

0 10 20 30 40 50 
X 

FIGURE 6. Anisotropic Taylor dispersion coefficient B vs. non-dimensional tether length x 
at various Langevin parameters h for the loaded dumb-bell. 

Figures 6 and 6 present A and B 218. x at parametric values of A. In the limit A = 0, 
where the gravitational orienting force is relatively small, the isotropic portion A of 
the dispersivity is identical with the function M of the previous section. Increasing 
A generally tends to decrease A, though not to a major extent. In  contrast, the 
coefficient B of the anisotropic term vanishes at  A = 0, but increases substantially 
with increasing A (at fixed values of 2).  

18 FLM 183 
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8. Discussion 
8.1. Size-juctuation dispersion and preaveraging approximations 

Having created an exact standard against which approximate calculations may be 
compared, questions may now be quantitatively addressed regarding the accuracy 
of ad hoc preaveraging techniques, whereby the flexible sedimenting chain is replaced 
by an equivalent ‘average’ rigid geometric object for purposes of computing its 
‘ average ’ hydrodynamic resistance properties. Our calculations clearly indicate the 
non-existence of any simple rigorous relation which would a priori allow a 
‘ preaveraged ’ hypothetical rigid body to be constructed - one exhibiting the same 
mean velocity and dispersivity as the original flexible chain. This effect is particularly 
dramatic as regards calculation of the Taylor dispersivity contribution (an effect 
hitherto not considered (cf. Zimm 1982)) in examining the merits of preaveraging 
approximations. For example, in the case of a rigid homogeneous dumb-bell 
undergoing sedimentation, the term corresponding to f ( r )  in (6.39) can be shown to 
be completely absent (cf. Brenner 1979), whence no contribution comparable to & in 
the dispersivity (cf. (6.74b), (6 .73~))  would be surmized by any preaveraging scheme. 
Figures 3 and 4 indicate that the latter coefficient can be comparable in magnitude 
with the contribution 8, which continues to exist (albeit with some modifications) 
even for rigid non-spherical bodies. In this context, it  is perhaps useful to coin the 
descriptive designation ‘ size-fluctuation dispersion ’ for this phenomenon, represen- 
ting the contribution to the Taylor dispersivity over and above that possible for an 
anisotropic rigid structure (Brenner 1979, 1981). In fact, such a dispersive contri- 
bution would be present even if the flexible body were always spherical in shape (like 
a bubble) but could suffer Brownian ‘fluctuations ’ in its instantaneous radius 
(Brenner & Mauri 1988). 

8.2. Summary 
A general scheme has been provided permitting rigorous calculations of the long-time 
macrotransport coefficients characterizing the mean translational velocity vector 
and Taylor dispersivity dyadic of flexible chains and clusters of rigid Brownian 
particles, sedimenting under the influence of a uniform external force within 
otherwise quiescent viscous fluids. The constituent rigid particles may be of arbitrary 
shapes and sizes, and mutually interact via arbitrary configuration-specific internal 
potentials. Full account is taken of the non-zero sizes and of the hydrodynamic 
interactions among the individual rigid particles comprising the flexible chain. Our 
formulas are free of any preaveraging approximations. Explicit examples are given 
only for dumb-bells, since these are currently the only multi-particle objects for which 
complete configuration-specific hydrodynamic interaction data are available over 
the entire range of geometrically accessible conformations. 

H.B. is grateful to the Microgravity Sciences and Applications Program of NASA 
for support of this research under Grant No. NSG-7645 administered by the Materials 
Processing Center of M.I.T. 
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